k_{2} for large K^{\prime} as shown in Figure 55. p / σ_{3} continues to increase with k_{2} as shown in Figure 56. Thus, both p / σ_{1} and p / σ_{3} increase with large K^{1} for $k_{2}=2.0$ and $k_{1}=1.5$. For values of k_{2} between 2.0 and 4.0 , however, computer calculations show that p / σ_{1} and p / σ_{3} first continue to increase and then decrease.

The pressure-to-strength ratios can also be increased by increasing the support pressure p_{3}. This is shown in Figure 57. With the high ratios shown, it is theoretically possible to have bore pressures as high as $1,000,000$ psi in ring-fluid-segment container. However, practicable limitations regarding excessive interference and size requirements, which are discussed later, considerably reduce the pressure capability of this design.

The interferences and residual pressures for outer and inner parts of the ring-fluid-segment container can be calculated using the analysis derived previously for the multiring container and the ring-segment container, respectively.

Pin-Segment Container

The analysis of the pin-segment container, shown in Figure 39d, also assumes a high-strength liner. It is also assumed that any manufactured interference is taken up during assembly by slack between pins and holes. Therefore, the residual pressure, q_{l}, between liner and segments is zero at room temperature and nonzero at temperature only if the coefficient of thermal expansion of the liner, α_{1}, is greater than that of the segments, α_{2}. In this analysis, it is assumed that $\alpha_{1} \geqq \alpha_{2}$.

The following radial deformation equation must be satisfied:

$$
\begin{equation*}
u_{1}\left(r_{1}\right)+\alpha_{1} \Delta \operatorname{Tr} r_{1}=u_{2}\left(r_{1}\right)+\alpha_{2} \Delta \operatorname{Tr}_{2} \tag{64}
\end{equation*}
$$

where
$u_{1}\left(r_{1}\right)=$ the radial deformation of the liner at r_{1} due to p at r_{o} and p_{1} at r_{1} when $p \neq 0$, and due to q_{1} at r_{1} when $p=0$
$u_{2}\left(r_{1}\right)=$ the radial deformation of the segments at r_{1} due to p_{1} or q_{1} at r_{1} and the pin loading at r_{2}.

Substituting into Equation (64), Equations (14a) and (23a) for u_{1} and u_{2}, and solving for p_{1}, one gets

$$
\begin{equation*}
p_{1}=\frac{l}{g_{2}}\left[\frac{2 p}{k_{1}^{2}-1}+E_{1} \Delta T\left(\alpha_{1}-k_{2} \alpha_{2}\right)\right] \tag{65}
\end{equation*}
$$

FIGURE 55. EFFECT OF SEGMENT SIZE ON THE PRESSURE-TO-STRENGTH RATIO, p / σ_{1}, FOR THE RING-FLUID-SEGMENT CONTAINER

FIGURE 56. EFFECT OF SEGMENT SIZE ON THE PRESSURE-TO-STRENGTH RATIO, p / σ_{3}, FOR THE RING-FLUID-SEGMENT CONTAINER

